250,986 research outputs found

    Criticality and quenched disorder: rare regions vs. Harris criterion

    Get PDF
    We employ scaling arguments and optimal fluctuation theory to establish a general relation between quantum Griffiths singularities and the Harris criterion for quantum phase transitions in disordered systems. If a clean critical point violates the Harris criterion, it is destabilized by weak disorder. At the same time, the Griffiths dynamical exponent zz' diverges upon approaching the transition, suggesting unconventional critical behavior. In contrast, if the Harris criterion is fulfilled, power-law Griffiths singularities can coexist with clean critical behavior but zz' saturates at a finite value. We present applications of our theory to a variety of systems including quantum spin chains, classical reaction-diffusion systems and metallic magnets; and we discuss modifications for transitions above the upper critical dimension. Based on these results we propose a unified classification of phase transitions in disordered systems.Comment: 4.5 pages, 1 eps figure, final version as publishe

    The Harris-Luck criterion for random lattices

    Get PDF
    The Harris-Luck criterion judges the relevance of (potentially) spatially correlated, quenched disorder induced by, e.g., random bonds, randomly diluted sites or a quasi-periodicity of the lattice, for altering the critical behavior of a coupled matter system. We investigate the applicability of this type of criterion to the case of spin variables coupled to random lattices. Their aptitude to alter critical behavior depends on the degree of spatial correlations present, which is quantified by a wandering exponent. We consider the cases of Poissonian random graphs resulting from the Voronoi-Delaunay construction and of planar, ``fat'' ϕ3\phi^3 Feynman diagrams and precisely determine their wandering exponents. The resulting predictions are compared to various exact and numerical results for the Potts model coupled to these quenched ensembles of random graphs.Comment: 13 pages, 9 figures, 2 tables, REVTeX 4. Version as published, one figure added for clarification, minor re-wordings and typo cleanu

    Two-dimensional Site-Bond Percolation as an Example of Self-Averaging System

    Full text link
    The Harris-Aharony criterion for a statistical model predicts, that if a specific heat exponent α0\alpha \ge 0, then this model does not exhibit self-averaging. In two-dimensional percolation model the index α=1/2\alpha=-{1/2}. It means that, in accordance with the Harris-Aharony criterion, the model can exhibit self-averaging properties. We study numerically the relative variances RMR_{M} and RχR_{\chi} for the probability MM of a site belongin to the "infinite" (maximum) cluster and the mean finite cluster size χ\chi. It was shown, that two-dimensional site-bound percolation on the square lattice, where the bonds play the role of impurity and the sites play the role of the statistical ensemble, over which the averaging is performed, exhibits self-averaging properties.Comment: 15 pages, 5 figure

    Self-Averaging in the Three Dimensional Site Diluted Heisenberg Model at the critical point

    Full text link
    We study the self-averaging properties of the three dimensional site diluted Heisenberg model. The Harris criterion \cite{critharris} states that disorder is irrelevant since the specific heat critical exponent of the pure model is negative. According with some analytical approaches \cite{harris}, this implies that the susceptibility should be self-averaging at the critical temperature (Rχ=0R_\chi=0). We have checked this theoretical prediction for a large range of dilution (including strong dilution) at critically and we have found that the introduction of scaling corrections is crucial in order to obtain self-averageness in this model. Finally we have computed critical exponents and cumulants which compare very well with those of the pure model supporting the Universality predicted by the Harris criterion.Comment: 11 pages, 11 figures, 14 tables. New analysis (scaling corrections in the g2=0 scenario) and new numerical simulations. Title and conclusions chang

    Harris Corners in the Real World: A Principled Selection Criterion for Interest Points Based on Ecological Statistics

    Get PDF
    In this report, we consider whether statistical regularities in natural images might be exploited to provide an improved selection criterion for interest points. One approach that has been particularly influential in this domain, is the Harris corner detector. The impetus for the selection criterion for Harris corners, proposed in early work and which remains in use to this day, is based on an intuitive mathematical definition constrained by the need for computational parsimony. In this report, we revisit this selection criterion free of the computational constraints that existed 20 years ago, and also importantly, taking advantage of the regularities observed in natural image statistics. Based on the motivating factors of stability and richness of structure, a selection threshold for Harris corners is proposed that is optimal with respect to the structure observed in natural images. Following the protocol proposed by Mikolajczyk et al. \cite{miko2005} we demonstrate that the proposed approach produces interest points that are more stable across various image deformations and are more distinctive resulting in improved matching scores. Finally, the proposal may be shown to generalize to provide an improved selection criterion for other types of interest points. As a whole, the report affords an improved selection criterion for Harris corners which might foreseeably benefit any system that employs Harris corners as a constituent component, and additionally presents a general strategy for the selection of interest points based on any measure of local image structure

    Rare regions and Griffiths singularities at a clean critical point: The five-dimensional disordered contact process

    Get PDF
    We investigate the nonequilibrium phase transition of the disordered contact process in five space dimensions by means of optimal fluctuation theory and Monte Carlo simulations. We find that the critical behavior is of mean-field type, i.e., identical to that of the clean five-dimensional contact process. It is accompanied by off-critical power-law Griffiths singularities whose dynamical exponent zz' saturates at a finite value as the transition is approached. These findings resolve the apparent contradiction between the Harris criterion which implies that weak disorder is renormalization-group irrelevant and the rare-region classification which predicts unconventional behavior. We confirm and illustrate our theory by large-scale Monte-Carlo simulations of systems with up to 70570^5 sites. We also relate our results to a recently established general relation between the Harris criterion and Griffiths singularities [Phys. Rev. Lett. {\bf 112}, 075702 (2014)], and we discuss implications for other phase transitions.Comment: 10 pages, 5 eps figures included, applies the optimal fluctuation theory of arXiv:1309.0753 to the contact proces

    Effective critical behaviour of diluted Heisenberg-like magnets

    Full text link
    In agreement with the Harris criterion, asymptotic critical exponents of three-dimensional (3d) Heisenberg-like magnets are not influenced by weak quenched dilution of non-magnetic component. However, often in the experimental studies of corresponding systems concentration- and temperature-dependent exponents are found with values differing from those of the 3d Heisenberg model. In our study, we use the field--theoretical renormalization group approach to explain this observation and to calculate the effective critical exponents of weakly diluted quenched Heisenberg-like magnet. Being non-universal, these exponents change with distance to the critical point TcT_c as observed experimentally. In the asymptotic limit (at TcT_c) they equal to the critical exponents of the pure 3d Heisenberg magnet as predicted by the Harris criterion.Comment: 15 pages, 4 figure

    Criticality and Quenched Disorder: Harris Criterion Versus Rare Regions

    Get PDF
    We employ scaling arguments and optimal fluctuation theory to establish a general relation between quantum Griffiths singularities and the Harris criterion for quantum phase transitions in disordered systems. If a clean critical point violates the Harris criterion, it is destabilized by weak disorder. At the same time, the Griffiths dynamical exponent z\u27 diverges upon approaching the transition, suggesting unconventional critical behavior. In contrast, if the Harris criterion is fulfilled, power-law Griffiths singularities can coexist with clean critical behavior, but z\u27 saturates at a finite value. We present applications of our theory to a variety of systems including quantum spin chains, classical reaction-diffusion systems and metallic magnets, and we discuss modifications for transitions above the upper critical dimension. Based on these results we propose a unified classification of phase transitions in disordered systems

    Quantum phase transitions in disordered dimerized quantum spin models and the Harris criterion

    Get PDF
    We use quantum Monte Carlo simulations to study effects of disorder on the quantum phase transition occurring versus the ratio g=J/J' in square-lattice dimerized S=1/2 Heisenberg antiferromagnets with intra- and inter-dimer couplings J and J'. The dimers are either randomly distributed (as in the classical dimer model), or come in parallel pairs with horizontal or vertical orientation. In both cases the transition violates the Harris criterion, according to which the correlation-length exponent should satisfy nu >= 1. We do not detect any deviations from the three-dimensional O(3) universality class obtaining in the absence of disorder (where nu = 0.71). We discuss special circumstances which allow nu<1 for the type of disorder considered here.Comment: 4+ pages, 3 figure
    corecore